Spinal laminae I-II neurons in rat recorded in vivo in whole cell, tight seal configuration: properties and opioid responses.
نویسندگان
چکیده
Using the in vivo whole cell recording procedure described previously, we recorded 73 neurons in laminae I and II in the lumbar spinal cord of the rat. Input impedances averaged 332 MOmega, which indicated that prior sharp electrode recordings contained a significant current shunt. Characterization of the adequate stimuli from the excitatory hindlimb receptive field indicated that 39 of 73 neurons were nociceptive, 6 were innocuous cooling cells, 20 responded maximally to brush, and 8 cells were not excited by stimulation of the skin of the hindlimb. The locations of 15 neurons were marked with biocytin. Nociceptive neurons were mostly found in lamina I and outer II, cooling cells in lamina I, and innocuous mechanoreceptive cells were mostly found in inner II or in the overlying white matter. The mu-opioid agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-Enkephalin (DAMGO) hyperpolarized 7 of 19 tested neurons with a conductance increase. This hyperpolarization was reversed by naloxone in the neurons in which it was applied. DAMGO also decreased the frequency of spontaneous PSPs in 13 neurons, 7 of which were also hyperpolarized by DAMGO. Five of the seven hyperpolarized neurons were nociceptive, responding to both heat and mechanically noxious stimuli, whereas two responded to slow, innocuous brush. These results indicate that whole cell, tight seal recordings sample a similar population of lamina I and II neurons in the rat as those found with sharp electrode recordings in cat and monkey. They further indicate that DAMGO hyperpolarizes a subset of the nociceptive neurons that have input from both heat and mechanical nociceptors and that presynaptic DAMGO effects can be observed in nociceptive neurons that are not hyperpolarized by DAMGO.
منابع مشابه
Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons.
Activation of the endogenous opioid system can suppress pain without affecting other sensations, but the cellular mechanism of this selectivity is unclear. The analgesia might be due to inhibitory synapses arranged only on neurons whose activity leads to pain sensations. Alternatively, opioids might be released broadly, with neurons involved in pain sensation being especially sensitive. Therefo...
متن کاملDynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn
BACKGROUND The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were ...
متن کاملSynaptic reorganization in the substantia gelatinosa after peripheral nerve neuroma formation: aberrant innervation of lamina II neurons by Abeta afferents.
Intracellular recording and extracellular field potential (FP) recordings were obtained from spinal cord dorsal horn neurons (laminae I-IV) in a rat transverse slice preparation with attached dorsal roots. To study changes in synaptic inputs after neuroma formation, the sciatic nerve was sectioned and ligated 3 weeks before in vitro electrophysiological analysis. Horseradish peroxidase labeling...
متن کاملThe effects of extrasynaptic substance P on nociceptive neurons in laminae I and II in rat lumbar spinal dorsal horn.
Inflammation of the skin induces release and extrasynaptic spread of neuropeptides such as substance P mainly in spinal laminae I and II and causes changes in discharge properties of nociceptive neurons in spinal dorsal horn. To evaluate the role of extrasynaptic substance P we have superfused the spinal cord at recording segment with artificial cerebrospinal fluid or with substance P. A total ...
متن کاملOpioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons.
Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J. Neurophysiol. 80: 2954-2962, 1998. Using tight-seal, whole cell recordings from isolated transverse slices of hamster and rat spinal cord, we investigated the effects of the mu-opioid agonist (-Ala2, N-Me-Phe4,Gly5-ol)-enkephalin (DAMGO) on the membrane potential and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 6 شماره
صفحات -
تاریخ انتشار 1999